Copied to
clipboard

G = C23.46D20order 320 = 26·5

17th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.46D20, (C2xC8).187D10, C20.415(C2xD4), (C2xC4).148D20, (C2xC20).166D4, (C2xDic10):25C4, C22.55(C2xD20), (C22xC10).99D4, C20.44D4:39C2, C20.71(C22:C4), C20.173(C22xC4), (C2xC20).771C23, (C2xC40).317C22, Dic10.40(C2xC4), C2.3(C8.D10), (C22xC4).132D10, C5:4(C23.38D4), (C2xM4(2)).14D5, C4.11(D10:C4), C10.19(C8.C22), (C10xM4(2)).25C2, C4:Dic5.283C22, (C22xC20).179C22, (C22xDic10).15C2, C22.26(D10:C4), (C2xDic10).226C22, C23.21D10.16C2, C4.72(C2xC4xD5), (C2xC4).48(C4xD5), C4.108(C2xC5:D4), (C2xC20).272(C2xC4), (C2xC10).161(C2xD4), (C2xC4).75(C5:D4), C10.95(C2xC22:C4), C2.26(C2xD10:C4), (C2xC4).719(C22xD5), (C2xC10).82(C22:C4), SmallGroup(320,747)

Series: Derived Chief Lower central Upper central

C1C20 — C23.46D20
C1C5C10C20C2xC20C4:Dic5C23.21D10 — C23.46D20
C5C10C20 — C23.46D20
C1C22C22xC4C2xM4(2)

Generators and relations for C23.46D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=e2=c, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 526 in 150 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2xC4, C2xC4, C2xC4, Q8, C23, C10, C10, C10, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C2xQ8, Dic5, C20, C20, C2xC10, C2xC10, C2xC10, Q8:C4, C42:C2, C2xM4(2), C22xQ8, C40, Dic10, Dic10, C2xDic5, C2xC20, C2xC20, C22xC10, C23.38D4, C4xDic5, C4:Dic5, C23.D5, C2xC40, C5xM4(2), C2xDic10, C2xDic10, C22xDic5, C22xC20, C20.44D4, C23.21D10, C10xM4(2), C22xDic10, C23.46D20
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22:C4, C22xC4, C2xD4, D10, C2xC22:C4, C8.C22, C4xD5, D20, C5:D4, C22xD5, C23.38D4, D10:C4, C2xC4xD5, C2xD20, C2xC5:D4, C8.D10, C2xD10:C4, C23.46D20

Smallest permutation representation of C23.46D20
On 160 points
Generators in S160
(1 102)(2 83)(3 104)(4 85)(5 106)(6 87)(7 108)(8 89)(9 110)(10 91)(11 112)(12 93)(13 114)(14 95)(15 116)(16 97)(17 118)(18 99)(19 120)(20 101)(21 82)(22 103)(23 84)(24 105)(25 86)(26 107)(27 88)(28 109)(29 90)(30 111)(31 92)(32 113)(33 94)(34 115)(35 96)(36 117)(37 98)(38 119)(39 100)(40 81)(41 140)(42 121)(43 142)(44 123)(45 144)(46 125)(47 146)(48 127)(49 148)(50 129)(51 150)(52 131)(53 152)(54 133)(55 154)(56 135)(57 156)(58 137)(59 158)(60 139)(61 160)(62 141)(63 122)(64 143)(65 124)(66 145)(67 126)(68 147)(69 128)(70 149)(71 130)(72 151)(73 132)(74 153)(75 134)(76 155)(77 136)(78 157)(79 138)(80 159)
(1 102)(2 103)(3 104)(4 105)(5 106)(6 107)(7 108)(8 109)(9 110)(10 111)(11 112)(12 113)(13 114)(14 115)(15 116)(16 117)(17 118)(18 119)(19 120)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 91)(31 92)(32 93)(33 94)(34 95)(35 96)(36 97)(37 98)(38 99)(39 100)(40 101)(41 140)(42 141)(43 142)(44 143)(45 144)(46 145)(47 146)(48 147)(49 148)(50 149)(51 150)(52 151)(53 152)(54 153)(55 154)(56 155)(57 156)(58 157)(59 158)(60 159)(61 160)(62 121)(63 122)(64 123)(65 124)(66 125)(67 126)(68 127)(69 128)(70 129)(71 130)(72 131)(73 132)(74 133)(75 134)(76 135)(77 136)(78 137)(79 138)(80 139)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 134 21 154)(2 54 22 74)(3 132 23 152)(4 52 24 72)(5 130 25 150)(6 50 26 70)(7 128 27 148)(8 48 28 68)(9 126 29 146)(10 46 30 66)(11 124 31 144)(12 44 32 64)(13 122 33 142)(14 42 34 62)(15 160 35 140)(16 80 36 60)(17 158 37 138)(18 78 38 58)(19 156 39 136)(20 76 40 56)(41 116 61 96)(43 114 63 94)(45 112 65 92)(47 110 67 90)(49 108 69 88)(51 106 71 86)(53 104 73 84)(55 102 75 82)(57 100 77 120)(59 98 79 118)(81 135 101 155)(83 133 103 153)(85 131 105 151)(87 129 107 149)(89 127 109 147)(91 125 111 145)(93 123 113 143)(95 121 115 141)(97 159 117 139)(99 157 119 137)

G:=sub<Sym(160)| (1,102)(2,83)(3,104)(4,85)(5,106)(6,87)(7,108)(8,89)(9,110)(10,91)(11,112)(12,93)(13,114)(14,95)(15,116)(16,97)(17,118)(18,99)(19,120)(20,101)(21,82)(22,103)(23,84)(24,105)(25,86)(26,107)(27,88)(28,109)(29,90)(30,111)(31,92)(32,113)(33,94)(34,115)(35,96)(36,117)(37,98)(38,119)(39,100)(40,81)(41,140)(42,121)(43,142)(44,123)(45,144)(46,125)(47,146)(48,127)(49,148)(50,129)(51,150)(52,131)(53,152)(54,133)(55,154)(56,135)(57,156)(58,137)(59,158)(60,139)(61,160)(62,141)(63,122)(64,143)(65,124)(66,145)(67,126)(68,147)(69,128)(70,149)(71,130)(72,151)(73,132)(74,153)(75,134)(76,155)(77,136)(78,157)(79,138)(80,159), (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,109)(9,110)(10,111)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,101)(41,140)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,155)(57,156)(58,157)(59,158)(60,159)(61,160)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,133)(75,134)(76,135)(77,136)(78,137)(79,138)(80,139), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,134,21,154)(2,54,22,74)(3,132,23,152)(4,52,24,72)(5,130,25,150)(6,50,26,70)(7,128,27,148)(8,48,28,68)(9,126,29,146)(10,46,30,66)(11,124,31,144)(12,44,32,64)(13,122,33,142)(14,42,34,62)(15,160,35,140)(16,80,36,60)(17,158,37,138)(18,78,38,58)(19,156,39,136)(20,76,40,56)(41,116,61,96)(43,114,63,94)(45,112,65,92)(47,110,67,90)(49,108,69,88)(51,106,71,86)(53,104,73,84)(55,102,75,82)(57,100,77,120)(59,98,79,118)(81,135,101,155)(83,133,103,153)(85,131,105,151)(87,129,107,149)(89,127,109,147)(91,125,111,145)(93,123,113,143)(95,121,115,141)(97,159,117,139)(99,157,119,137)>;

G:=Group( (1,102)(2,83)(3,104)(4,85)(5,106)(6,87)(7,108)(8,89)(9,110)(10,91)(11,112)(12,93)(13,114)(14,95)(15,116)(16,97)(17,118)(18,99)(19,120)(20,101)(21,82)(22,103)(23,84)(24,105)(25,86)(26,107)(27,88)(28,109)(29,90)(30,111)(31,92)(32,113)(33,94)(34,115)(35,96)(36,117)(37,98)(38,119)(39,100)(40,81)(41,140)(42,121)(43,142)(44,123)(45,144)(46,125)(47,146)(48,127)(49,148)(50,129)(51,150)(52,131)(53,152)(54,133)(55,154)(56,135)(57,156)(58,137)(59,158)(60,139)(61,160)(62,141)(63,122)(64,143)(65,124)(66,145)(67,126)(68,147)(69,128)(70,149)(71,130)(72,151)(73,132)(74,153)(75,134)(76,155)(77,136)(78,157)(79,138)(80,159), (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,109)(9,110)(10,111)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,101)(41,140)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,155)(57,156)(58,157)(59,158)(60,159)(61,160)(62,121)(63,122)(64,123)(65,124)(66,125)(67,126)(68,127)(69,128)(70,129)(71,130)(72,131)(73,132)(74,133)(75,134)(76,135)(77,136)(78,137)(79,138)(80,139), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,134,21,154)(2,54,22,74)(3,132,23,152)(4,52,24,72)(5,130,25,150)(6,50,26,70)(7,128,27,148)(8,48,28,68)(9,126,29,146)(10,46,30,66)(11,124,31,144)(12,44,32,64)(13,122,33,142)(14,42,34,62)(15,160,35,140)(16,80,36,60)(17,158,37,138)(18,78,38,58)(19,156,39,136)(20,76,40,56)(41,116,61,96)(43,114,63,94)(45,112,65,92)(47,110,67,90)(49,108,69,88)(51,106,71,86)(53,104,73,84)(55,102,75,82)(57,100,77,120)(59,98,79,118)(81,135,101,155)(83,133,103,153)(85,131,105,151)(87,129,107,149)(89,127,109,147)(91,125,111,145)(93,123,113,143)(95,121,115,141)(97,159,117,139)(99,157,119,137) );

G=PermutationGroup([[(1,102),(2,83),(3,104),(4,85),(5,106),(6,87),(7,108),(8,89),(9,110),(10,91),(11,112),(12,93),(13,114),(14,95),(15,116),(16,97),(17,118),(18,99),(19,120),(20,101),(21,82),(22,103),(23,84),(24,105),(25,86),(26,107),(27,88),(28,109),(29,90),(30,111),(31,92),(32,113),(33,94),(34,115),(35,96),(36,117),(37,98),(38,119),(39,100),(40,81),(41,140),(42,121),(43,142),(44,123),(45,144),(46,125),(47,146),(48,127),(49,148),(50,129),(51,150),(52,131),(53,152),(54,133),(55,154),(56,135),(57,156),(58,137),(59,158),(60,139),(61,160),(62,141),(63,122),(64,143),(65,124),(66,145),(67,126),(68,147),(69,128),(70,149),(71,130),(72,151),(73,132),(74,153),(75,134),(76,155),(77,136),(78,157),(79,138),(80,159)], [(1,102),(2,103),(3,104),(4,105),(5,106),(6,107),(7,108),(8,109),(9,110),(10,111),(11,112),(12,113),(13,114),(14,115),(15,116),(16,117),(17,118),(18,119),(19,120),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,91),(31,92),(32,93),(33,94),(34,95),(35,96),(36,97),(37,98),(38,99),(39,100),(40,101),(41,140),(42,141),(43,142),(44,143),(45,144),(46,145),(47,146),(48,147),(49,148),(50,149),(51,150),(52,151),(53,152),(54,153),(55,154),(56,155),(57,156),(58,157),(59,158),(60,159),(61,160),(62,121),(63,122),(64,123),(65,124),(66,125),(67,126),(68,127),(69,128),(70,129),(71,130),(72,131),(73,132),(74,133),(75,134),(76,135),(77,136),(78,137),(79,138),(80,139)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,134,21,154),(2,54,22,74),(3,132,23,152),(4,52,24,72),(5,130,25,150),(6,50,26,70),(7,128,27,148),(8,48,28,68),(9,126,29,146),(10,46,30,66),(11,124,31,144),(12,44,32,64),(13,122,33,142),(14,42,34,62),(15,160,35,140),(16,80,36,60),(17,158,37,138),(18,78,38,58),(19,156,39,136),(20,76,40,56),(41,116,61,96),(43,114,63,94),(45,112,65,92),(47,110,67,90),(49,108,69,88),(51,106,71,86),(53,104,73,84),(55,102,75,82),(57,100,77,120),(59,98,79,118),(81,135,101,155),(83,133,103,153),(85,131,105,151),(87,129,107,149),(89,127,109,147),(91,125,111,145),(93,123,113,143),(95,121,115,141),(97,159,117,139),(99,157,119,137)]])

62 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4L5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222244444···455888810···101010101020···202020202040···40
size111122222220···202244442···244442···244444···4

62 irreducible representations

dim11111122222222244
type++++++++++++--
imageC1C2C2C2C2C4D4D4D5D10D10C4xD5D20C5:D4D20C8.C22C8.D10
kernelC23.46D20C20.44D4C23.21D10C10xM4(2)C22xDic10C2xDic10C2xC20C22xC10C2xM4(2)C2xC8C22xC4C2xC4C2xC4C2xC4C23C10C2
# reps14111831242848428

Matrix representation of C23.46D20 in GL6(F41)

100000
010000
0040000
0004000
000010
000001
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
090000
32190000
000001
00004034
0091100
00301400
,
630000
2350000
00222200
00321900
0000338
00001738

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,32,0,0,0,0,9,19,0,0,0,0,0,0,0,0,9,30,0,0,0,0,11,14,0,0,0,40,0,0,0,0,1,34,0,0],[6,2,0,0,0,0,3,35,0,0,0,0,0,0,22,32,0,0,0,0,22,19,0,0,0,0,0,0,3,17,0,0,0,0,38,38] >;

C23.46D20 in GAP, Magma, Sage, TeX

C_2^3._{46}D_{20}
% in TeX

G:=Group("C2^3.46D20");
// GroupNames label

G:=SmallGroup(320,747);
// by ID

G=gap.SmallGroup(320,747);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,232,254,387,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<